

Withdrawal from 2009-02-01: SCAN-test-Methods of physical character:

Preparation of laboratory	SCAN-CM 64:00	ISO 5269-3:2008
sheets for physical testing		
-Part 3: Conventional and		
Rapid-Köthen sheet		
formers using a closed		
water system		
Applicable to	This Method is applicable to most	This part of ISO 5269 is
	kinds of pulp. It applies especially	especially applicable to
	for the preparation of laboratory	mechanical and chemimechanical
	sheets from mechanical pulps.	pulps as well as to pulps prepared
	It is not suitable for some very	from recycled fibres.
	long-libred pulps	It is not applicable to some very
Principle	In a conventional sheet former	White water at retention
1 rincipie	equipped with a system to	equilibrium is produced by
	recirculate the water, a circular or	preparing laboratory sheets of
	rectangular sheet is formed from a	defined grammage using a closed
	pulp suspension on a wire screen	water system. This white water is
	under suction. The sheet is	then used to prepare the sheets
	400 kPa. It is dried in conditioned	testing in either the conventional
	air and in contact with a drying	sheet former or the Rapid-Köthen
	plate, to which it adheres so that it	sheet former.
	does not shrink.	
Apparatus		
Sheet former	Conventional sheet former	Conventional sheet former and
Cinculating system system for	Consisting of a reservoir placed und	Rapid-Kothen sheet former
the conventional sheet	circulating water and a pumping sys	stem which allows the sheet former
forme or	to be filled from below the wire and	also from above the wire. The
former	water in the closed water system sha	all be in motion to avoid
	sedimentation of the fines. All parts	of the system that come into
	contact with the water shall be of a	non-corrosive material (plastic or
Due e e dune	stainless steel).	
Proceaure Dragonation of subits contain	$Grammaga 60 g/m^2$:	Crommogo 60 g/m ² :
Preparation of white water	No of build up sheets: > 8	No of build up sheets: >10
		Produce sheets until the closed
	Grammage 140 g/m ² :	water system is in retention
	Produce sheets until the closed	equilibrium.
	water system is in retention	Higher grammage (required
	equilibrium.	grammage):
		order to obtain a closed water
		system in retention equilibrium.
Report		
	Statement of the disintegration	The disintegration procedure used
	and beating given to the sample in	in the laboratory.
	the laboratory.	

P 19:78	ISO 5626-5:2003
Paper and board	Paper and board
Air is compressed by the weight of a hollow, vertical cylinder, having an open bottom and a closed top, and floating in a liquid. A test piece is in contact with the compressed air and the cylinder sinks steadily as air passes through the test piece. The time for a given volume of air to pass the test piece is measured.	Air is compressed by the weight of a vertical cylinder floating in a liquid. A test piece is in contact with the compressed air and the cylinder falls steadily as air passes through the test piece. The time for a given volume of air to pass through the test piece is measured and from this the air permeance is calculated.
10 (5 top side /5 bottom side) Size of test piece: 50 x 50 mm	10 (5 top side /5 bottom side) Size of test piece: If top clamp: 50 x 120 mm If base clamp: 50 x 50 mm
$S = \frac{128}{t} $ ** t=100 ml	$P = \frac{135,3}{t}$ ** t=106 ml
The air pressure inside the floating cylinder is determined by the mass of the cylinder and the dimensions of the apparatus. The pressure decreases slowly during the test. The decrease during a test is of the order of 1 % of the mean pressure difference, which is 1,21 kPa . The above expression is derived by inserting this pressure difference, the air flow $\frac{10^{-4}}{t}$ m ³ /s and the test piece area, 649,9*10⁻⁶ m ² (6,499 cm ²) in the formula given in the definition.	This formula is based on a mean pressure difference of 1,22 kPa and a test area of 6,42 cm² and an actual volume of 106 ml of air passing through the test specimen measured at room pressure.
	P 19:78Paper and boardAir is compressed by the weight of a hollow, vertical cylinder, having an open bottom and a closed top, and floating in a liquid. A test piece is in contact with the compressed air and the cylinder sinks steadily as air passes through the test piece. The time for a given volume of air to pass the test piece is measured.10 (5 top side /5 bottom side) Size of test piece: 50 x 50 mm $S = \frac{128}{t}$ $t=100$ mlThe air pressure inside the floating cylinder is determined by the mass of the cylinder and the dimensions of the apparatus. The pressure decreases slowly during the test. The decrease during a test is of the order of 1 % of the mean pressure difference, which is 1,21 kPa. The above expression is derived by inserting this pressure difference, the air flow $\frac{10^{-4}}{t}$ m ³ /s and the test piece

The air permeance, in	the air permeance, in
micrometres per pascal	micrometres per pascal
second, to two significant	second, to two significant
figures.	figures or, if required, the air
	resistance, in seconds per
	100 ml, to two significant
	figures.
**For calculating the air permeance, the SCAN method uses the	
factor is 128 and the quite recent	tly revised ISO standard the
factor 135,3. Today, the factor 1	35,3 in ISO 5636-5 is regarded
to be correct and the SCAN-test	factor to be obsolete and
incorrect. To avoid confusion in trade situations, it is important	
that the same factor is used worldwide. The change from the	
factor 128 to 135,3 will cause a change in result of approx 6 %,	
so for that reason SCAN-test has decided a longer time for	
consideration to make the transit	tion easier for the industry.

Determination of resistance to picking and delamination	SCAN-P 63:90	ISO 3783:2006
Applicable to	Paper and board intended to be printed by letterpress or litographic offset techniques.	Coated and uncoated paper and board intended to be printed in letterpress, litographic offset or modern flexographic techniques.
Principle	The conditioned paper/ board is printed with a disc bearing a specified printing load and at an accelerating speed. It is printed with a standard picking oil. The lowest speed at which picking is observed to occur is a measure of the picking resistance of the paper.	The conditioned sample is printed with a disc bearing a specified load and at an accelerating speed. It is printed with high viscosity inks (oils), and the minimum speed at which pick occurs is a measure of the pick resistance of the paper.
Apparatus		
IGT Printability Tester	Primarily IGT AC2	IGT Printability Testers – all models
Oil Applicator	Two application units, each comprising two steel rollers and a distribution roller of polyurethane. Newer models include an extra distribution roller beneath.	Consisting of two or more inking drums having contact with a top roller. The ink distribution surface area A of the rollers shall be known to the nearest 0,1cm ² .
Printing unit	Motor driven sector with radius 85 mm, various models; AC2, AIC2, AIC2-5.The printing speed is known at every point on the printed test piece.	Printing device having a sector with a radius of (85±0,2) mm, incorporating a facility enabling a packing to be mounted on the sector under tension.

Determination of resistance to picking and delamination	SCAN-P 63:90	ISO 3783:2006
	Uniformly increasing velocity, known pressure.	Uniformly increasing velocity.
Viewing device	Microscope lamp and magnifying lens. Area of first pick is illuminated and enlarged (2x). Mark first picking . Curved sample holder to hold piece while examining.	Test piece holder – curved, with internal radius of 40mm. Mark first picking
Procedure		
Sampling	Condition sample sheets as in ISO 187, (23±1)°C. Dimensions 350 mm x 25 mm.	Sampling in accordance with ISO 186. Conditioning as in ISO 187, (23±1)°C, (50±2)%RH. Preferred size is 340 mm x 55 mm, but shorter samples can be handled.
Selection of pick test oil and end velocity	The final speed and the oil should be chosen so that the position the picking starts, lies between 40 and 180 mm from the start of the print.	Oil and end-velocity are chosen so that picking do not start earlier than 50 mm from the start of the print, and not close to the end of the print.
Report	Disking/delemination	Calculate rich vale site from
resistance	resistance is found from placing the test-strip in a table given in this standard. Calculate mean and the std.dev. for each direction and side to the nearest 0,05 m/s.	formula. Calculate mean and the std.dev. for each direction and side. Calculate mean temperature for the testing zone. Calculate resistance/ delamination according to the temperature (viscosity table)
Results in report	Report answer to nearest 0,05 m/s.	

Determination of colour by diffuse reflectance (D65/10°)	SCAN 72:95	ISO 5631-2:2008
Applicable to	Evaluation of the colour of paper and boards according to the CIE 1964 standard colorimetric system and the CIE standard illuminant D65	Describes the measurements and description of colour in terms of the CIE illuminant D65 and the CIE 1964(10°) standard observer. This method is especially applicable to graphic arts situations.

Determination of colour		
by diffuse reflectance (D65/10°)	SCAN 72:95	ISO 5631-2:2008
Principle	The tristimulus values as defined by the CIE 1964 standard observer and the CIE D65-illuminant are determined and from these the L*, a* and b* values are calculated.	The light reflected from a sample under specified conditions is analyzed either by a tristimulus-filter colorimeter or by an abridged spectrophotometer, and the colour coordinates are then calculated for D65/10° conditions.
Apparatus		
spectrophotometer	As specified in ISO 2469 equipped with a light source having an adequate UV- content. Both reflectometer and abridged spectrophotometer can be used – with requirements as is set in this method.	Reflectometer having characteristics as described in ISO 2469. If fluorescent material is to be measured, as description in ISO 11475. Abridged photometer with requirements as set in this standard can be used.
Reference standards	For calibration, both fluorescent and non fluorescent.	For calibration, both fluorescent and non fluorescent.
Working standards	Fluorescent and non fluorescent. Black cavity. Detergent – a dilute , no- colored, not fluorescent solution	Non fluorescent:Two plates of opal glass. A stable tablet incorporating a fluorescent whitening agent. Black cavity.
Procedure		
Calibration	Detailed description about what to do, also if values are not accepted.	Calibration is performed as described in ISO 11475, according to the instrument makers instructions
Measurement	As instructed by the manufacturer and in accordance with the provisions of ISO 2469. Also detailed description on how to treat the samples during the test.	Description on how to treat the samples during the test.
Report		
Calculations Significant figures	Calculate the tristimulus values according to formulas in this method if necessary. Calculate L*, a*, b*. Calculate mean values separately for each side of the sample.	Calculate the tristimulus values according to CIE publication 15.3 (2004) or ASTM E308-06 or from table in Annex A. Calculate mean $<\Delta E_{ab}$ *>value.
Significant ligures		Report L' a' o' -values to

Determination of colour by diffuse reflectance (D65/10°)	SCAN 72:95	ISO 5631-2:2008
		three significant figures and
		MCDM-value (Mean Colour
		Difference from the Mean) to
		two significant figures.

Decided withdrawal without replacing ISO standard:

SCAN-test	SCAN-test title	Reasons for withdrawal
Method		
M 13:83	Mechanical pulp – Shives content – PFI	No ISO standard. The SCAN-test
	Mini-shive fractionator	Method is not, to our knowledge, used
		in the industry today.
P 10:93	Paper and board – Identification of wire	No ISO standard. The SCAN-test
	side	Method is not, to our knowledge, used
		in the industry today.
P 18:66	Contact angle of water on paper and	The interest for revision was very
	paperboard	small and the TK decided instead to
		recommend the following more
		modern Methods:
		TAPPI T 558 pm -95 or ASTM D 5725
		-95.