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Statistical treatment of test results 
 

0 Introduction 

The value of statistical methods lies in the fact that they 
make it possible to interpret test results according to 
strictly objective criteria. A statistical analysis of test 
data does not increase the experimental precision by 
transforming uncertain results to certainties, but it does 
make it possible to express numerically, in the form of 
definite probabilities, the significance to be attached to 
the conclusions drawn from the results.  

The purpose of this Guideline is to give a brief 
description of those statistical methods which are 
recommended for use in the treatment of test data 
derived according to SCAN-test Methods and to promote 
uniformity in the use of statistical terms and symbols, 
and in the mode of expressing test results.  

This SCAN-test Guideline replaces SCAN-G 2:63. 
This revised version differs from the earlier version in 
that certain equations which were considered helpful 
before computerised help was available have now been 
omitted. In addition, the sections relating to the 
calculation of uncertainties have been extended, and 
information is provided as an aid to the development of 
precision statements in SCAN-test Methods. 
This Guideline can with advantage be read in 
conjunction with SCAN-G 6:00 Uncertainty of results 
from physical testing. The ISO Technical report ISO/TR 
24498 Paper, board and pulps – Estimation of 
uncertainty for test methods may also be helpful. 

1 Scope 

This SCAN-test Guideline gives a brief description of 
the simple statistical methods commonly used in the 
treatment of test data and provides the necessary 
equations. It does not give detailed derivations of the 
equations, nor does it provide proofs of the theorems 
presented.  The equations are presented in a manner 
which enables persons without statistical training to 
apply the methods, but it is recommended that a person 
with statistical training and experience be consulted 
before conclusions are drawn from the results.  

A number of numerical examples are presented in 
Annex A as an illustration of how the methods are to be 
applied.  

2 Terms and definitions 

2.1 Measurement − processing of a single test piece 
or test portion 
 

Note – The number of measurements required for a 
test is usually stated in the method. 

 
2.2 Result of a measurement − value of the property 
obtained by a single measurement 
 
2.3 Test − complete procedure, including preparation 
of the test material, performing the number of 
measurements required, and making the necessary 
calculations 
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2.4 Result of a test − value (e.g. mean, standard 
deviation etc) reported for the test and calculated from 
the results of all the measurements 

 
2.5 Population − finite or infinite amount of material 
or number of units  

 
Note – It is normally not practical to measure every 
unit in a population, and a sample must therefore be 
taken. 

 
2.6 Sample − limited amount of material taken from a 
population  

Note 1 – The material is taken for the purpose of 
providing a finite number of test pieces on which a 
certain property is to be measured, in order to 
obtain an estimate of the value of that property in 
the material from which the sample is taken. 

Note 2 − In this Guideline, the term sample is used 
in its statistical sense. In physical or chemical test 
methods this word may have another meaning. 

 
2.7 Random sample − limited amount of material 
selected at random from a population, i.e. in such a 
manner that any unit in the population has an equal 
probability of being selected, so that the sample may be 
considered to be fully representative of the population 
from which it is taken 
 
2.8 Test piece − piece or quantity of material taken 
from the sample for use in a single measurement in a 
chemical or physical test 

 
2.9 Statistic − single value calculated from and used 
to represent a set of measurement results, usually as an 
estimate of some parameter of a population from which a 
sample has been taken 

 
2.10 Mean, arithmetic mean, μ  or x  − a statistic 
describing the population calculated as the sum of the 
individual measurement results divided by the number of 
measurements 

 
Note – the symbol μ is used to denote the mean of 
the population, and the symbol x  is used to denote 
the mean of a set of measurements, and thus the 
estimated mean of the population. 

 
2.11 Median, Mx − statistic describing a set of 
measurements chosen so that 50 % of the values are 
above and 50 % of the values are below Mx  
 
2.12 Range − difference between the largest and the 
smallest values of a set of measurement results  
 

2.13 Dispersion − measure of the extent to which the 
results of the individual measurements are scattered 
about the mean 
 
2.14 Variance of a population, 2σ  − sum of the 
squares of the deviations of the individual values of the 
property from the calculated mean divided by the 
number of measurements, n 
 
2.15 Variance of a sample, 2s  − sum of the squares of 
the deviations of the individual values of the property 
from the calculated mean divided by a factor equal to 
one less than the number of measurements, ( 1n − ) 

 
Note − Division by this factor ensures that the 
calculated variance of the sample is an unbiased 
estimate of the variance of the population from 
which the sample is taken. 

 
2.16 Standard deviation, σ  or s  − square root of the 
variance 
 

Note – This is the most commonly used measure of 
the dispersion. The symbol σ  is used to denote the 
standard deviation of the population, and the 
symbol s is used to denote the standard deviation of 
a set of measurements, and thus the estimated 
standard deviation of the population. 

 
2.17 Coefficient of variation, CoV − standard deviation 
divided by the mean 
 

Note – The coefficient of variation is expressed as a 
percentage. It is sometime referred to as the relative 
standard deviation. 
 

2.18 Straggler − member of a set of values which is 
unusually high or unusually low and is inconsistent with 
the other members of that set at a 5 % probability level 
 

Note – If the result of a statistical test shows that a 
result is a straggler but not an outlier, it should 
normally not be rejected. 

 
2.19 Outlier − member of a set of values which is 
extremely high or extremely low and is inconsistent with 
the other members of that set at a 1 % probability level 

Note − If the result of a statistical test shows that a 
result is an outlier, this result should be excluded 
from the subsequent statistical calculations. 

 
2.20 Significance − extent to which the data indicate 
that the observed effect has a given probability of not 
being due solely to chance 
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Note – The level of significance is usually 
expressed either as the probability p that the given 
result is due to chance or, more commonly, as the 
probability (1 – p) that the result is not due to 
chance. Significance tests are frequently applied for 
p < 0,05, i.e. for (1 – p) > 0,95, commonly called 
the 95 % significance level. In critical situations, a 
significance of 99 % (p <0,01) may be required. 

 
2.21 Degree of freedom − number of independent 
comparisons which can be made between the members 
of a sample 
 

Note – The number of degrees of freedom is 
usually n-1 where n is the number of independent 
measurements of tests being considered. 

 
2.22 Confidence limits − limits which define with a 
given probability the range within which a given statistic 
is estimated to lie 

 
Note – The confidence limits most commonly 
referred to are those associated with the estimated 
mean of a population calculated from 
measurements made on a limited sample taken 
from the population.  

 
2.23 Student’s t-distribution − probability of a 
continuous random variable used to assess the 
significance of a measured statistic. 

 
Note 1 – Values of the distribution provided in 
tabular form for different degrees of freedom are 
used in the calculation of confidence limits. 
 
Note 2 – This distribution was published in 1908 by 
“Student”, the pseudonym of W S Gosset. 

 
2.24 Uncertainty − measure of the uncertainty 
associated with a given statistic 

 
Note 1 – In the case of the mean, the simple 
uncertainty is equal to the estimated standard 
deviation of the population. 
 
Note 2 – Information about the calculation of 
combined uncertainties associated with different 
sources of uncertainty is given in SCAN-G 6. 

 
2.25 Expanded uncertainty, U − simple uncertainty 
multiplied by a coverage factor, k, so that U k  s= ⋅

 
Note – In the case of the mean, the expanded 
uncertainty is analogous to the confidence limit. 

2.26 Repeatability conditions − conditions where 
independent test results are obtained with the same 
method on identical test items in the same laboratory by 
the same operator using the same equipment within a 
short interval of time 

 
Note – In the testing of pulps, paper and board, it is 
not possible to make measurements strictly under 
repeatability conditions if, as is often the case, the 
test is destructive. 

 
2.27 Repeatability standard deviation, rs − standard 
deviation of measurement results obtained under 
repeatability conditions 

 
2.28 Repeatability limit, r − value less than or equal to 
which the absolute difference between two test results 
obtained under repeatability conditions is expected to be 
with a given probability  

 
2.29 Reproducibility conditions − conditions where the 
test results are obtained with the same method on 
identical test items in different laboratories with different 
operators using different equipment. 

 
Note – In the testing of pulps, paper and board, it is 
not possible to make measurements strictly under 
reproducibility conditions if, as is often the case, 
the test is destructive 

 
2.30 Reproducibility standard deviation, Rs − standard 
deviation of test results obtained under reproducibility 
conditions 

 
2.31 Reproducibility limit, R − value less than or equal 
to which the absolute difference between two test results 
obtained under reproducibility conditions is expected to 
be with a  given probability  

3 Distributions 

In any population of different values of a variable, the 
different values occur with different frequencies. The 
nature of the population can thus be described by the 
distribution of the frequencies with which the different 
values of the variable occur. This frequency distribution 
can be illustrated graphically by a frequency curve.  

When tests are carried out on a number of test pieces 
taken from a sample of the population, the values 
obtained are also distributed with different frequencies, 
which are estimates of the probabilities that these values 
occur with these frequencies in the population. The 
probability distribution thus describes the probable 
frequencies with which different events are expected to 
occur in a sample taken at random from the population. 
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This probability distribution can be described by a 
probability curve which will resemble the frequency 
curve of the total population. 

The primary purpose of a statistical analysis is (a) to 
calculate suitable statistics to describe the distribution 
and (b) to assess the reliability of these statistics as a 
description of the population.  

3.1 Histogram 

If a set of measurements has been made on test pieces 
taken from a sample from the population, it is possible to 
obtain an approximate idea of the appearance of the 
frequency curve of the population by constructing a 
histogram, Figure 1, where measurement results are 
grouped in classes indicated by the figures at the base of 
each rectangle. The height of each rectangle represents 
the number of measurement results assigned to the 
interval.  
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Figure 1. Histogram 

 
Figure 1 is a histogram for a set of 15 measurements, the 
magnitudes of the results of which are between 2 and 7. 
Two of the results lie between 2 and 3, four between 3 
and 4, five between 4 and 5, three between 5 and 6, and 
one between 6 and 7. 

If this test is extended by increasing the number of 
measurements and if the class interval is decreased, the 
stepped form of the histogram will approach a smooth 
frequency curve. Such a frequency curve can often be 
given a definite mathematical form.  

4 Measures of location 

To describe a distribution in simple terms, some measure 
of the location of the distribution is required, i.e. some 
measure of the centre of the distribution. 

 

4.1 Mean 

The (arithmetic) mean or average value of a set of results  
of measurements of a given variable is calculated as the 

sum of the individual measurements divided by the 
number of measurements: 

 
( )1 2 ... n xx x x

x
n n

+ + +
= ∑=  [1] 

4.2 Weighted mean 

If the data are sorted into groups with different numbers 
of values in the different groups, this must be taken into 
consideration when the mean is calculated. 

The mean of a frequency distribution is calculated as 
the weighted mean where the different values recorded 
are multiplied by their respective frequencies and the 
sum is then divided by the total number of 
measurements: 

 i i

i

f xx
f

Σ
=

Σ
 [2] 

where f i  are the frequencies of the values xi . 

4.3 Median 

In some cases, particularly when a distribution is 
extremely skew, it is inappropriate to calculate the mean 
since this may be unduly affected by the magnitude of 
the extreme values. In this case it may be more 
appropriate to calculate the median xm which is defined 
as: 

 1 2 3 1 2 2, , ... , , ...n m n n n nx x x x x x x x x+ +< <  [3] 

where x1, x2, x3 …… are the results of the individual 
measurements arranged in ascending order.   

 
If the number of measurements is odd, i.e. if the 

highest number is 2 1nx + , the median is calculated as  

 1m nx x +=  [4] 

If the number of measurements is even, i.e. if the highest 
number is 2nx , the median is calculated as  

 1(
2

n n
m

x xx ++
=

)  [5] 

Note – It is possible to extend this procedure to 
divide the data into quartiles, where 25 % of the 
values are larger than the upper quartile and 75 % 
of the values are larger than the lower quartile etc.  

5 Measures of dispersion 

The mean alone is not sufficient to describe the character 
of a distribution. Some measure of the degree of 
dispersion around the mean is also required. The 
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measure of dispersion mostly used is the standard 
deviation σ, which is the positive square root of the 
variance.  

From a set of n measurement results x1 x2 ...xn , the 
variance σ2 of the population is estimated by calculating 
s2 according to the expression: 

 
( )2

2

1

x x
s

n

−
=

−
∑  [6] 

The term n-1 is used instead of n, since division by n has 
been shown to give a biased estimation of 2σ , 
particularly for low values of n. 

A measure of the standard deviation in the population 
σ  is consequently obtained by calculating: 

 
( )2

1

x x
s

n

−
=

−
∑  [7] 

 
In addition to the standard deviation, it is sometimes of 
interest to report the relative standard deviation, i.e. the 
magnitude of the standard deviation in relation to the 
mean value. This is called the coefficient of variation, 
CoV, and it is usually expressed as a percentage: 

 100 sCoV
x

=  [8] 

6 Tests for and rejection of outliers 

Occasionally one member of a set of measurement 
values may appear to differ abnormally from the others. 
The question then arises as to whether or not this 
difference is because the abnormal value belongs to a 
different population. Several statistical criteria have been 
suggested for answering this question.  

It is clear that a value which does not properly belong 
to the test series should not be included in the calculation 
of the mean or in any subsequent analysis, but it must be 
emphasised that extreme caution should be exercised 
before a value is rejected. A value should preferably be 
rejected only if it has been established that an actual 
mistake has been made. An unusually high or low value 
may often be due to the natural variation in the material 
and, if this value is rejected, the remaining values will 
give an incorrect picture of the distribution and 
particularly the standard deviation will be too small.  

In order to test whether a value is unreasonably far 
from the mean, Grubb's test (cf. ISO 5725) can be 
applied to check whether an exceptionally high or an 
exceptionally low value xi is to be regarded as an outlier. 
Grubb's statistic, G, is calculated as: 

 ix x
G

s
−

=  [9] 

Critical values for Grubb's test at the 1% probability 
level are given in Table 1. If the value obtained for G is 
higher than the value given in the table, ix is an outlier 
and can be rejected. Note that this procedure should be 
used only once for each set of data. 
 
Table 1. Critical values for Grubb's test 

No of 
values 

Outliers 
p<0,01 

Stragglers 
p<0,05 

5 1,764 1,175 
6 1,973 1,887 
7 2,139 2,020 
8 2,274 2,126 
9 2,387 2,215 

10 2,482 2,290 
   

11 2,564 2,355 
12 2,636 2,412 
13 2,699 2,462 
14 2,755 2,507 
15 2,806 2,549 

   
16 2,852 2,585 
17 2,894 2,620 
18 2,932 2,651 
19 2,968 2,681 
20 3,001 2,709 

   
21 3,031 2,733 
22 3,060 2,758 
23 3,087 2,781 
24 3,112 2,802 
25 3,135 2,822 

 

7 The normal distribution 

Experience has shown that the results of sets of 
measurements are often distributed in a manner which 
shows a close agreement with the mathematically well-
known normal distribution which has a bell-shaped 
form. 
The equation for the frequency curve is a function of the 
mean μ  and the standard deviation σ , viz.: 

 

( )2

221
2

x

y e

μ
σ

σ π

⎛ ⎞−⎜ ⎟−
⎜
⎝⎛ ⎞

= ⎜ ⎟
⎝ ⎠

⎟
⎠  [10] 

where  
y is the relative frequency; 
x is the measured quantity. 
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The frequency curve is shown in Figure 2, where the 
measured quantities x are given as multiples of 

T

σ . The 
curve reaches its maximum at x  = μ , and is 
symmetrical around this point. 
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Figure 2. Normal frequency curve. 
 

In the particular case where μ = 0 and σ = 1, the 
equation is reduced to: 

 
2

21
2

x

y e
π

−
=  [11] 

This equation can be integrated up to a certain value, or 
between certain limits. In this way it is possible to 
calculate the probability that the result of a single 
measurement, x, will fall above or below a certain value 
or that x will occur between two given limits.  

It is useful to note that the probability that a single 
value of a normally distributed variable deviates from its 
mean by more than s is 31,7 %, by more than 2σ is 
4,6 %, and by more than 3σ is 0,3 %, and that a 
deviation of more than 4σ occurs on average only once 
in 10 000 measurements. Alternatively, it can be said 
that approximately 68 % of all values lie within ± σ from 
the mean, and that 95 % of all value lie within ± 2σ.  

8 Accuracy and precision 

It is important in the presentation of test results to 
distinguish between accuracy and precision. 

The accuracy of a test result is a statement of the 
extent to which it conforms to the true value.  

The precision of a test result is a statement of the 
extent to which the set of measurement results on which 
the test result is based are dispersed about the mean. The 
precision is expressed as the confidence limits, or as the 
uncertainty of the mean.  

Both the accuracy and the precision can be reported 
in either absolute or relative measures. In any report it is 

important to state which measure has been used, 
especially if the results are expressed as percentages. 

9 Systematic and random errors 

All errors can be divided into two types, systematic and 
random errors.  
A systematic error affects the accuracy of the method 
and of the values measured, but the existence and 
magnitude of a systematic error are normally unknown, 
since they can be estimated only by comparison of the 
calculated mean for a set of measurements with the 
“true” mean, which has been calculated or determined in 
an independent manner. If the magnitude of a systematic 
error is indeed known, steps will normally be taken to 
eliminate this error. 

A random error is a measure of the precision or 
reproducibility of a method, the magnitude being 
indicated by the dispersion.  

A systematic error is regular and may be due, for 
example, to a defect in the measuring device used, 
whereas a random error is irregular and is due to 
variations by chance in the measured results. 

10 Random variations 

In a statistical context, the term random error is often 
used to describe variations which are not errors but 
which are true variations in the material. 

If a measurement can be repeated on a single test 
piece, the results of the repeat measurements will vary 
within a certain range (and the variations will usually be 
normally distributed) and this variation is the random 
error associated with the method or the instrument. 

If measurements are made on a set of different test 
pieces, the variation in the results is due not only to any 
random error in the method or instrument but also to a 
real variation within the sample. These two possible 
causes cannot normally be separated.  

Unless information to the contrary is available, it is 
usually correct in a pulp, paper or board context to 
assume that the differences among measurement results 
are indeed due to variations in the material. The standard 
deviation is thus often an important material property 
which should be reported together with the mean. 

11 The confidence interval 

After having obtained an estimate of a certain quantity 
on the basis of a test series, it may be necessary to state 
the degree of uncertainty associated with this estimate.  

This is usually done by giving the limits within 
which the true value of the assessed magnitude is 
expected to lie with a certain specified degree of 
significance (100-p) %. These limits are called the 
confidence limits, the interval between them is called the 
confidence interval, and the value of p is the level of 
significance.  
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If n measurements have been made on a sample from a 
population having a normal distribution, and the mean 
value x  and the standard deviation s have been 
calculated, it can be shown that the standard deviation 
associated with the mean  is given by sm

 m
ss
n

=  [12] 

The (100-p) % confidence limits of the mean can then be 
expressed by the formula: 

 pt s

n

⋅
±  [13] 

where tp is a value related to the normal distribution 
which gives the probability that the true value lies within 
the given limits.   

The appropriate value of tp is obtained from a table of 
Student’s t distribution. This value is dependent both 
upon the selected level of significance, p, and upon the 
number of measurements, N, on which the calculation of 
s is based. The number of degrees of freedom, f, is given 
by f = n – 1. Normally N = n.  

The level of significance can be chosen at will, the 
levels most frequently used being those given in Table 2, 
viz: 5 %, 1 % and 0,1 %. Usually the 5 % level is 
recommended.  

In this case, the expression 

 pt s
U

n

⋅
= ±  [14] 

is also the expanded uncertainty associated with the 
mean, where tp is the coverage factor (p <0,05). 

It should be noted here that the confidence limits can 
be made narrower, i.e. the precision of the estimate of 
the mean value can be increased, by increasing the 
number of measurements n, but this does not of course 
affect the variation in the material indicated by the 
standard deviation s. 

12 Required number of measurements 

With the aid of equation [14] for the uncertainty or 
confidence interval, it is possible to calculate how many 
measurements will be required in order to obtain an 
estimate of the mean for a certain variable with a given 
degree of precision. A condition for this, however, is that 
an estimate, s, of the standard deviation ,σ , is available.  

Assuming that the standard deviation, s, has been 
calculated from earlier measurements, and that we wish 
to estimate the mean of the population with a precision 
of ± a and (100 - p) % confidence, (in other words, we 
require that the (100 - p) % confidence interval for the 
mean value shall have a width of 2a), the approximate 

number of observations, n, required to fulfil these 
conditions is given by: 

 
2

pt s
n

a
⋅⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 [15] 

where the appropriate value of  is taken from pt Table 2.  
 
 

Table 2 Student’s t-distribution 
Degrees of 

freedom, f  
 
 

 
 p

 
 

 5%  1%  0,1%  
4 2,78 4,60 8,61 
5 2,57 4,03 6,86 
    

6 2,45 3,71 5,96 
7 2,36 3,50 5,40 
8 2,31 3,36 5,04 
9 2,26 3,25 4,78 

10 2,23 3,17 4,59 
    

11 2,20 3,11 4,44 
12 2,18 3,06 4,32 
13 2,16 3,01 4,22 
14 2,14 2,98 4,14 
15 2,13 2,95 4,07 

    
16 2,12 2,92 4,02 
17 2,11 2,90 3,97 
18 2,10 2,88 3,92 
19 2,09 2,86 3,88 
20 2,09 2,84 3,85 

    
21 2,08 2,83 3,82 
22 2,07 2,82 3,79 
23 2,07 2,81 3,77 
24 2,06 2,80 3,74 
25 2,06 2,79 3,73 

    
26 2,06 2,78 3,71 
27 2,05 2,77 3,69 
28 2,05 2,76 3,67 
29 2,05 2,76 3,66 
30 2,04 2,75 3,65 

    
40 2,02 2,70 3,55 
60 2,00 2,66 3,46 
120 1,98 2,62 3,37 
∞  1,96 2,58 3,29 
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13 Repeatability limits / reproducibility limits 

It is not always the precision of the mean that is the 
matter of greatest concern. Sometimes, it is important to 
use the statistical data available to provide an estimate of 
the maximum expected difference, with a given degree 
of probability, between two items taken at random from 
a population.  

In this case, if the expanded uncertainty associated 
with a single item is , then the maximum 
expected difference is equal to: 

pU t s= ⋅

 2UΔ = ⋅  [16] 

This equation can also be used to assess the repeatability 
limits, i.e. the maximum expected difference between the 
means of two sets of measurements made on material 
from the same population. 

 
2 pt s

n

⋅ ⋅
Δ =  [17] 

For measurements made under reproducibility conditions 
in different laboratories, the maximum expected 
difference between two sets of measurements is equal to 

 2 pt sΔ = ⋅ ⋅ *  [18] 

where s* is an appropriately calculated standard 
deviation derived from  a consideration of the various 
sources of variance in different instruments, different 
laboratories etc.. This is discussed more fully in 
ISO/TR 24498 and in Clause 17. 

14 Comparison of two means (t-test) 

An associated task, often encountered in practice, is to 
compare the means obtained from two different series of 
observations, and to assess whether or not, at a given 
probability level, they can be considered to come from 
the same population, e.g, whether two batches of 
nominally the same material differ significantly in their 
properties.  

Consider the case where 1x  and 2x  are the means of 
the series 1 and 2, nl and n2 are the numbers of individual 
measurements in each of the two series, and 1s  and 2s  
are the calculated standard deviations.  

If there is no great difference between 1s  and 2s  and 
there is no cause for assuming that there is any essential 
difference in the dispersions of the populations, a 
combined measure of the standard deviation based on all 
the measurement results, s , can be calculated according 
to the formula: 

 
( ) ( )2 2

1 1 2 2

1 2 2

x x x x
s

n n

− + −
=

+ −
∑ ∑  [19] 

The statistic t is then calculated according to: 

 
( )1 2

1 2

1 1
n n

x x
t

s

−
=

+
 [20] 

This value of t is then compared with the value tp 
(Table 2) corresponding to the p % level of significance 
and the number of degrees of freedom f given by: 

 1 2 2f n n= + −  [21] 

If the value of t is greater than the value tp, there is a 
significant difference between 1x  and 2x  and the two 
samples cannot be considered to have come from the 
same population.  
 

Note – It can never be established that the two 
samples do in fact come from the same population; 
only that if they come from different populations 
then the difference between the two populations is 
less than |x1 – x2|.  

15 Additivity of variances 

The assessment of the significance of a test result or the 
uncertainty associated with the result is often more 
complicated than a mere calculation of the mean and 
standard deviation of the measurement data. If the 
uncertainty is to be assessed in relation to the results of 
other tests in the same laboratory or of tests in different 
laboratories, other sources of variation and uncertainty 
must be considered. The basic principle to be observed 
in such cases is that, provided the different sources of 
variance are independent and uncorrelated, the variances 
are additive, i.e.: 

 2 2 2
1 2totals s s= + +…  [22] 

In this context, it is also important to note that if a mean 
standard deviation is required this must always be 
calculated as the root mean square: 

 
( )2 2 2

1 2 j
mean

s s s
s

j

+ +…+
=  [23] 

where j is the number of items in the series. It is not 
correct merely to calculate the mean of the standard 
deviations. 



 SCAN-G 2:07
Page 9

16 Repeatability limits 

When two independent tests are carried out under 
repeatability conditions, i.e. within the same laboratory 
by the same operator using the same equipment on the 
same occasion, the 95% probability that the two test 
results will not differ by an amount greater than Δ  is 

 
2pt s

n

⋅ ⋅
Δ =  [24] 

provided that the only source of variation is in the 
material. In equation [24], s is an overall standard 
deviation calculated in accordance with equation [19].  

This is not however a realistic situation. In general, 
under normal laboratory conditions within a paper mill, 
there are also other sources of variation between tests, 
which are associated with a standard deviation between 
tests, sbt , so that the total within-laboratory standard 
deviation, , is given by: swl

 
2

2 2 wt
wl bt

ss s
n

= +  [25] 

where swt  is the within-test standard deviation and n is 
the number of measurements in each test. It is possible to 
analyse the results and to determine separately the value 
of sbt , but this is often not necessary.  

The repeatability standard deviation, sr , is equal to 
 and the repeatability limits, r, are calculated as: swl

 1,96 2 rr = ⋅ ⋅ s

s

 [26] 

which can be simplified to the expression: 

  [27] 2,77 rr = ⋅

Note 1 – The standard deviation calculated directly 
from the results of different tests carried out in this 
manner is the repeatability standard deviation. It is 
not the between-test standard deviation which is 
defined as the component of the repeatability 
deviation which is independent of variations in the 
material. 

 
Note 2 – In SCAN-G 6, the quantity here referred 
to as  has the designation . swl sbts

 
In SCAN-G 6, this discussion is extended to include 
other sources of variation within a laboratory where the 
test is destructive and where tests are no longer carried 
out under repeatability conditions. In this case, if 
repeated tests are carried out on homogeneous material 
from the same batch on different occasions, it is possible 
to calculate the “long-term within-laboratory reproduci-

bility limits” in an analogous manner if the total standard 
deviation is calculated. 

17 Reproducibility limits 

Similarly, if similar tests are carried out in different 
laboratories with different items of equipment, other 
sources of variation will introduce additional 
uncertainties. In this case, the total variance is called the 
reproducibility variance and it may be expressed as: 

 
2

2 2 2
R bl bt

ss s s
n

= + +  [28] 

and the reproducibility limits, R, are given by: 

 1,96 2 RR s= ⋅ ⋅  [29] 

Note –  is not equal to the between-laboratory 
standard deviation , which is only one 
component of the total reproducibility uncertainty. 

sR
sbl

18 Within-laboratory standard deviation outliers 

When a comparison is made involving different 
laboratories, it is sometimes necessary to exclude a 
laboratory that shows an unreasonably high within-
laboratory standard deviation. 
In order to determine whether an abnormally large 
standard deviation is statistically an outlier, Cochran's 
test according to ISO 5725, with a rejection level of 1 %, 
can be applied. The test shall be applied only to the 
laboratory having the highest deviation.  

Cochran's statistic, C, is calculated as: 

 
2
.max

2

1

i
P

i
i

sC

s
=

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑

 [30] 

where P is the number of laboratories in the comparison. 
Critical values for Cochran's test are given in 

Table 3. A laboratory should be excluded from the 
comparison if the value of C obtained is higher than the 
value given in the table. 

Any laboratory excluded on the basis of too high a 
standard deviation shall be completely excluded from the 
subsequent analysis. 
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Table 3. Critical values for Cochran's test (p<0,01) 

No of labs No of measurements in each 
test, n 

  5 10 
5 0,633 0,485 
6 0,564 0,423 
7 0,508 0,375 
8 0,463 0,337 
9 0,425 0,307 

10 0,393 0,281 
   

11 0,366  
12 0,343 0,242 
13 0,322  
14 0,304  
15 0,288 0,200 

   
16 0,274  
17 0,261  
18 0,249  
19 0,239  
20 0,229 0,157 

   
21   
22   
23   
24 0,197 0,134 
25   

 

19 Reporting test results 

The result of a series of measurements of a property 
should generally be reported by: 
 

(a) the mean; 
(b) the number of measurements, n; 
(c) the standard deviation, s; 
(d) the 95 % confidence interval of the mean, or 

the expanded uncertainty of the mean; 
 (e)   whether any outliers have been rejected and 

the criterion of rejection that has been 
applied. 

 
Note 1 − If the data have been transformed so that 
the confidence interval has become asymmetrical in 
relation to the mean (e.g. as in the case of a skew 
distribution), the mean value, the two confidence 
limits and the number of measurements should be 
reported, as well as the mode of calculation used.  
 
Note 2 – In certain cases, such as with skew 
distributions, it may be suitable to report the 
median value, the range of the variation, and the 
number of measurements.  

20 Literature 

1. SCAN-G 6:00 Paper, board and pulp − Uncertainty 
 of results from physical testing 

 
2.  ISO/TR 24498:2006 Paper, board and pulps – 
 Estimation of uncertainty of test methods 

 
3.  ISO 5725-1:1994 Accuracy (trueness and 

precision) of measurement methods and results – 
Part 1: General principles and definitions 

 
4.  ISO 5725-2:1994 Accuracy (trueness and 

precision) of measurement methods and results – 
Part 2: Basic method for the determination of 
repeatability and reproducibility of a standard 
measurement method 
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Annex – Numerical examples 

A.0. General 

The following numerical examples are given as an added 
illustration of the applications indicated in the text. They 
also provide data which can be used to check the 
accuracy of calculation programmes from other sources 
or those written internally.  

A.1. A sample from a population with a normal 
distribution 

Fifteen individual measurements of a variable with a 
normal distribution have been obtained in a test as 
shown in Table A.1. 

 
Table A.1 

4,10 4,37 4,51 
4,24 4,45 4,59 
4,28 4,44 4,66 
4,31 4,47 4,70 
4,36 4,50 4,75 

 
Calculate in turn: 
1. x∑    = 66,73 

2. 
x

x
n

= ∑    = 4,449 

3. 2x∑    = 297,3119 

4. 
( )

( )

2
2

1

x x
s

n

−
=

−
∑    = 0,0323 

5. s    = 0,180 

6. 100 sCoV
x

⋅
=    = 4,0 % 

7. 1f n= −    = 14 
8.  for   5t 14f =  = 2,14 

9. 5t s

n
U ⋅

=    = 0,0997 

A.2. A population with a skew distribution 

The following twelve individual measurements of a 
variable with an unknown distribution have been 
obtained in a test, as shown in Table A.2. 

 
Table A.2 
2,07 2,79 3,37 4,40 
2,37 2,84 3,41 4,84 
2,64 3,23 3,78 6,30 

 
 

 
Draw a histogram in order to obtain an idea of the 

type of distribution. 
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The histogram indicates a skew distribution. An ordinary 
calculation of the mean and the dispersion may then be 
inappropriate.  

Try a transformation, e.g. by taking the base-ten 
logarithms, as in Table A.3. 

 
Table A.3 

0,316 0,446 0,528 0,642 
0,375 0,453 0,533 0,685 
0,422 0,509 0,577 0,799 
 
Draw another histogram for the transformed variable. 
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The distribution obtained by this transformation 

appears to be approximately normal, and the 
computation can therefore be continued with the 
logarithmic values: 

 
1. x∑    = 6,286 
2. x    = 0,5238 
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3. 2x∑    = 3,498648 

4. 
( )

( )

2
2

1

x x
s

n

−
=

−
∑    = 0,01871 

5. s    = 0,137 
6. 1f n= −    = 11 
7.  for   5t 11f =  = 2,20 

8. 5t s

n
U ⋅

=    = 0,0777 

 
Reverting to the original scale, we obtain 
 ' ( log0,5238)x anti=    = 3,34 
The lower 95 % confidence limit = 
   log(0,5238 0,0777)anti −  = 2,79 
The upper 95 % confidence limit = 
   log(0,5238 0,0777)anti +  = 4,00 
 
The confidence interval is thus asymmetrical around 

this weighted mean, 'x . In this case, the coefficient of 
variation is difficult to interpret, and hence the following 
is reported: 

 
' 3,34x =   ( 12n = )

95 % confidence interval 2,79 to 4,00.  
 
Note – The calculation of values that had not been 
converted to logarithms would have given a mean 
of 3,50, and the confidence limits 2,77 and 4,23, i.e. 
a shift towards higher values which in reality are 
less representative of the distribution. 

A.3. Required number of measurements 

If it is assumed that the data obtained are related to a  
population with a normal distribution, it is possible to 
calculate the number of measurements required in order 
to reduce the uncertainty of the estimated mean of the 
population to less than a given value.   

Consider the case where it is required to assess the 
mean of the population with a precision of ± 0,10 with 
95 % confidence. Preliminary tests show that the 
standard deviation is approximately 0,25. How many test 
pieces shall be measured? 

Table 2 gives, for 
f = ∞  

5 1,96t =  
Calculate 

22
5 1,96 0,25

0,10
t sn

a
⋅ ⎛ ⋅ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
   = 24,01 

Approximately 25 measurements should thus be 
made. 

A.4. The significance of the difference between two 
means 

Sets of 10 measurements of a normally distributed 
variable have been made on each of two samples of 
paper, as in Table A.4.  

 
Table A.4 

Measurement 
No 

Sample 1 Sample 2 

1 30 26 
2 23 22 
3 26 25 
4 24 24 
5 28 26 
6 24 24 
7 25 26 
8 28 19 
9 24 23 

10 28 27 
   

Mean 26,0 24,2 
Std.dev. 2,357 2,394 

 
The task is to determine whether these two samples 

can be regarded as having been drawn from the same 
population, i.e. whether the difference between the two 
means may be due to chance, or whether there is a 
statistically significant difference between them.  

The calculated values of the means and standard 
deviations are shown in the table. Since the two standard 
deviations are very similar, the combined standard 
deviation can be used. 

Calculate: 

( ) ( )2 2
1 1 2 2

1 2 2

x x x x
s

n n

− + −
=

+ −
∑ ∑    = 2,376 

Calculate: 
( )1 2

5

1 2

1 1

x x
t

s
n n

−
=

⎛ ⎞
⋅ +⎜ ⎟

⎝ ⎠

   = 1,694 

 
The value of  given in Table 2 for 

f = (n
5t

 + n2 - 2) = 18 is 2,10.  
 
Since the calculated value of t5 is less than this value, 

the difference between the two means is not significant 
and the two samples can very well have been taken from 
the same population.   

A.5. Rejection of extreme values 

Twelve laboratories have each carried out a test on 
material supplied from a single batch. Each test consists 
of ten measurements and the results are shown in Table 
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A.5, as the mean and standard deviation for each 
laboratory. 

 
Table A.5 

Laboratory Mean Std.dev. 
1 52,6 3,5 
2 54,4 3,7 
3 54,8 3,3 
4 55,6 5,2 
5 56,2 3,8 
6 56,8 3,0 
7 57,2 3,6 
8 57,4 3,2 
9 58,6 3,6 

10 60,0 3,5 
11 62,2 3,8 
12 75,8 3,4 

 
In the third column of this table, the value of the 

standard deviation reported from laboratory No 4 
appears to be unusually high. To check whether this is a 
statistical outlier, calculate Cochran’s statistic C 

 

( )2

2

5,2
C

s
=

∑
   = 0,167 

 
According to Table 3, the critical value for 12 

laboratories with 10 measurements in each test is 0,242. 
Since the value obtained is less than this critical value, 
there is no need to consider this laboratory to be an 
outlier. 

In the second column of Table A.5, the value of the 
mean reported by Laboratory No 12 seems to be 
unusually high. To check whether this is a statistical 
outlier, calculate Grubb’s statistic G 

 
( )75,8 x

G
s
−

=    = 2,874 

 
According to Table 1, the critical value for an outlier 

for 12 laboratories is 2,636. Since the value obtained is 
higher than this critical value, this laboratory is a 
statistical outlier and should be eliminated from 
subsequent calculations. 

A.6 Calculation of reproducibility limits 

After elimination of laboratory 12 as indicated above, 
the data shown in Table A.6 are obtained. 

 

Table A.6 
Laboratory Mean Std.dev. 

1 52,6 3,5 
2 54,4 3,7 
3 54,8 3,3 
4 55,6 5,2 
5 56,2 3,8 
6 56,8 3,0 
7 57,2 3,6 
8 57,4 3,2 
9 58,6 3,6 

10 60,0 3,5 
11 62,2 3,8 

Mean 56,89 3.695 
Std.dev. 2,688  

 
In this table, the mean is calculated as: 

ix

n
∑    =56,89 

the mean standard deviation is calculated as: 
2
is

n
∑    = 3,695 

and the standard deviation of the mean is calculated 
as 

( )2

1
ix x

s
n

−
=

−
∑    = 2,688 

 
The reproducibility standard deviation is thus 2,69, 

and the reproducibility limits are calculated as 
1,96 2R s= ⋅ ⋅    = 7,45 

 
Note – The reproducibility limits include a 
contribution from the variation within the material. 
If it is of interest to calculate the standard deviation 
between laboratories disregarding the contribution 
from the test material, this can be calculated as: 

2
2 3,6952,688

10bls
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
   = 2,42 
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